Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JMIR Res Protoc ; 13: e57329, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669065

RESUMEN

BACKGROUND: Relative motion between the residual limb and socket in individuals with transtibial limb loss can lead to substantial consequences that limit mobility. Although assessments of the relative motion between the residual limb and socket have been performed, there remains a substantial gap in understanding the complex mechanics of the residual limb-socket interface during dynamic activities that limits the ability to improve socket design. However, dynamic stereo x-ray (DSX) is an advanced imaging technology that can quantify 3D bone movement and skin deformation inside a socket during dynamic activities. OBJECTIVE: This study aims to develop analytical tools using DSX to quantify the dynamic, in vivo kinematics between the residual limb and socket and the mechanism of residual tissue deformation. METHODS: A lower limb cadaver study will first be performed to optimize the placement of an array of radiopaque beads and markers on the socket, liner, and skin to simultaneously assess dynamic tibial movement and residual tissue and liner deformation. Five cadaver limbs will be used in an iterative process to develop an optimal marker setup. Stance phase gait will be simulated during each session to induce bone movement and skin and liner deformation. The number, shape, size, and placement of each marker will be evaluated after each session to refine the marker set. Once an optimal marker setup is identified, 21 participants with transtibial limb loss will be fitted with a socket capable of being suspended via both elevated vacuum and traditional suction. Participants will undergo a 4-week acclimation period and then be tested in the DSX system to track tibial, skin, and liner motion under both suspension techniques during 3 activities: treadmill walking at a self-selected speed, at a walking speed 10% faster, and during a step-down movement. The performance of the 2 suspension techniques will be evaluated by quantifying the 3D bone movement of the residual tibia with respect to the socket and quantifying liner and skin deformation at the socket-residuum interface. RESULTS: This study was funded in October 2021. Cadaver testing began in January 2023. Enrollment began in February 2024. Data collection is expected to conclude in December 2025. The initial dissemination of results is expected in November 2026. CONCLUSIONS: The successful completion of this study will help develop analytical methods for the accurate assessment of residual limb-socket motion. The results will significantly advance the understanding of the complex biomechanical interactions between the residual limb and the socket, which can aid in evidence-based clinical practice and socket prescription guidelines. This critical foundational information can aid in the development of future socket technology that has the potential to reduce secondary comorbidities that result from complications of poor prosthesis load transmission. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/57329.


Asunto(s)
Extremidad Inferior , Piel , Tibia , Humanos , Muñones de Amputación/diagnóstico por imagen , Muñones de Amputación/fisiopatología , Miembros Artificiales , Fenómenos Biomecánicos/fisiología , Cadáver , Extremidad Inferior/diagnóstico por imagen , Extremidad Inferior/cirugía , Extremidad Inferior/fisiología , Movimiento/fisiología , Piel/diagnóstico por imagen , Tibia/diagnóstico por imagen , Tibia/cirugía
2.
J Knee Surg ; 37(4): 326-332, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37192659

RESUMEN

Shortcomings of fixation have been reported as a source of graft failure in anterior cruciate ligament (ACL) reconstruction. While interference screws have long been used as fixation devices for ACL reconstruction, they are not without complications. Previous studies have highlighted the use of bone void filler as a fixation method; however, no biomechanical comparisons using soft tissue grafts with interference screws exist to our knowledge. The purpose of this study is to evaluate the fixation strength of a calcium phosphate cement bone void filler compared with screw fixation in an ACL reconstruction bone replica model with human soft tissue grafts. In total, 10 ACL grafts were constructed using semitendinosus and gracilis tendons harvested from 10 donors. Grafts were affixed with either an 8-10 mm × 23 mm polyether ether ketone interference screw (n = 5) or with approximately 8 mL of calcium phosphate cement (n = 5) into open cell polyurethane blocks. Graft constructs were tested to failure in cyclic loading under displacement control at a rate of 1 mm per second. When compared with screw construct, the cement construct showed a 978% higher load at yield, 228% higher load at failure, 181% higher displacement at yield, 233% higher work at failure, and a 545% higher stiffness. Normalized data for the screw constructs relative to the cement constructs from the same donor showed 14 ± 11% load at yield, 54 ± 38% load at failure, and 172 ± 14% graft elongation. The results of this study indicate that cement fixation of ACL grafts may result in a stronger construct compared with the current standard of fixation with interference screws. This method could potentially reduce the incidence of complications associated with interface screw placement such as bone tunnel widening, screw migration, and screw breakage.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Ligamento Cruzado Anterior , Humanos , Ligamento Cruzado Anterior/cirugía , Tendones/trasplante , Tornillos Óseos , Fosfatos de Calcio , Fenómenos Biomecánicos , Tibia/cirugía
3.
Foot Ankle Int ; 44(3): 232-242, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36859796

RESUMEN

BACKGROUND: Prophylactic vancomycin treatment decreases the prevalence of surgical site and deep infections by >70% in diabetic patients undergoing reconstructive foot and ankle surgery. Thus, determining whether clinically relevant local vancomycin doses affect diabetic fracture healing is of medical interest. We hypothesized that application of vancomycin powder to the fracture site during surgery would not affect healing outcomes, but continuous exposure of vancomycin would inhibit differentiation of osteoblast precursor cells and their osteogenic activity in vitro. METHODS: The vancomycin dose used to treat the diabetic rats was a modest increase to routine surgical site vancomycin application of 1 to 2 g for a 70-kg adult (21 mg/kg). After femur fracture in BB-Wistar type 1 diabetic rats, powdered vancomycin (25 mg/kg) was administered to the fracture site. Bone marrow and periosteal cells isolated from diabetic bones were cultured and treated with increasing levels of vancomycin (0, 5, 50, 500, or 5000 µg/mL). RESULTS: Radiographic scoring, micro-computed tomography (µCT) analysis, and torsion mechanical testing failed to identify any statistical difference between the vancomycin-treated and the untreated fractured femurs 6 weeks postfracture. Low to moderate levels of vancomycin treatment (5 and 50 µg/mL) did not impair cell viability, osteoblast differentiation, or calcium deposition in either the periosteum or bone marrow-derived cell cultures. In contrast, high doses of vancomycin (5000 µg/mL) did impair viability, differentiation, and calcium deposition. CLINICAL RELEVANCE: In this diabetic rodent fracture model, vancomycin powder application at clinically relevant doses did not affect fracture healing or osteogenesis.


Asunto(s)
Diabetes Mellitus Experimental , Fracturas del Fémur , Ratas , Animales , Vancomicina/farmacología , Curación de Fractura , Polvos , Calcio/farmacología , Calcio/uso terapéutico , Microtomografía por Rayos X , Ratas Wistar , Fracturas del Fémur/tratamiento farmacológico , Fracturas del Fémur/cirugía
4.
J Orthop Res ; 41(7): 1494-1504, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36515300

RESUMEN

The effects of locally applied zinc chloride (ZnCl2 ) on early and late-stage parameters of fracture healing were evaluated in a diabetic rat model. Type 1 Diabetes has been shown to negatively impact mechanical parameters of bone as well as biologic markers associated with bone healing. Zinc treatments have been shown to reverse those outcomes in tests of nondiabetic and diabetic animals. This study is the first to assess the efficacy of a noncarrier mediated ZnCl2 on bony healing in diabetic animals. This is a promising basic science approach which may lead to benefits for diabetic patients in the future. Treatment and healing were assessed through quantification of callus zinc, radiographic scoring, microcomputed tomography (µCT), histomorphometry, and mechanical testing. Local ZnCl2 treatment increased callus zinc levels at 1 and 3 days after fracture (p ≤ 0.025). Femur fractures treated with ZnCl2 showed increased mechanical properties after 4 and 6 weeks of healing. Histomorphometry of the ZnCl2 -treated fractures found increased callus cartilage area at Day 7 (p = 0.033) and increased callus bone area at Day 10 (p = 0.038). In contrast, callus cartilage area was decreased (p < 0.01) after 14 days in the ZnCl2 -treated rats. µCT analysis showed increased bone volume in the fracture callus of ZnCl2 -treated rats at 6 weeks (p = 0.0012) with an associated increase in the proportion of µCT voxel axial projections (Z-rays) spanning the fracture site. The results suggest that local ZnCl2 administration improves callus chondrogenesis leading to greater callus bone formation and improved fracture healing in diabetic rats.


Asunto(s)
Diabetes Mellitus Experimental , Fracturas del Fémur , Ratas , Animales , Zinc/farmacología , Diabetes Mellitus Experimental/complicaciones , Microtomografía por Rayos X , Callo Óseo , Curación de Fractura , Fracturas del Fémur/diagnóstico por imagen , Fracturas del Fémur/tratamiento farmacológico , Fracturas del Fémur/complicaciones
6.
J Orthop Res ; 39(10): 2252-2259, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33274763

RESUMEN

The effects of naproxen, a nonsteroidal anti-inflammatory drug (NSAID), on articular cartilage degeneration in female Sprague-Dawley rats was examined. Osteoarthritis (OA) was induced by destabilization of the medial meniscus (DMM) in each knee. Rats were treated with acetaminophen (60 mg/kg), naproxen (8 mg/kg), or 1% carboxymethylcellulose (placebo) by oral gavage twice daily for 3 weeks, beginning 2 weeks after surgery. OA severity was assessed by histological Osteoarthritis Research Society International (OARSI) scoring and by measuring proximal tibia cartilage depth using contrast enhanced µCT (n = 6 per group) in specimens collected at 2, 5, and 7 weeks after surgery as well as on pristine knees. Medial cartilage OARSI scores from the DMM knees of naproxen-treated rats were statistically lower (i.e., better) than the medial cartilage OARSI scores from the DMM knees of placebo-treated rats at 5-weeks (8.7 ± 3.6 vs. 13.2 ± 2.4, p = 0.025) and 7-weeks (9.5 ± 1.2 vs. 12.5 ± 2.5, p = 0.024) after surgery. At 5 weeks after DMM surgery, medial articular cartilage depth in the proximal tibia specimens was significantly greater in the naproxen (1.78 ± 0.26 mm, p = 0.005) and acetaminophen (1.94 ± 0.12 mm, p < 0.001) treated rats as compared with placebo-treated rats (1.34 ± 0.24 mm). However, at 7 weeks (2 weeks after drug withdrawal), medial articular cartilage depth for acetaminophen-treated rats (1.36 ± 0.29 mm) was significantly reduced compared with specimens from the naproxen-treated rats (1.88 ± 0.14 mm; p = 0.004). The results indicate that naproxen treatment reduced articular cartilage degradation in the rat DMM model during and after naproxen treatment.


Asunto(s)
Cartílago Articular , Osteoartritis , Acetaminofén/farmacología , Acetaminofén/uso terapéutico , Animales , Cartílago Articular/patología , Modelos Animales de Enfermedad , Femenino , Naproxeno/uso terapéutico , Osteoartritis/metabolismo , Ratas , Ratas Sprague-Dawley
7.
Ann N Y Acad Sci ; 1463(1): 45-59, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31919867

RESUMEN

Bone remodeling is achieved through the coupled activities of osteoclasts and osteoblasts that are controlled by many locally generated secreted factors, including WNT5A. While previous studies have demonstrated that osteoblast-derived WNT5A promotes osteoclastogenesis, the function of osteoclast-derived WNT5A on bone remodeling has remained unexplored. We examined the effects of osteoclast-derived WNT5A on bone homeostasis by utilizing the Cathepsin K-Cre (Ctsk-Cre) mouse to conditionally delete Wnt5a in mature osteoclasts. These mice exhibited reduced trabecular and cortical bone. The low bone-mass phenotype was driven by decreased bone formation, not osteoclast-mediated bone resorption, as osteoclast number and serum CTX marker were unchanged. Furthermore, molecular analysis of osteoclast- and osteoblast-derived WNT5A identified a serine-phosphorylated WNT5A that is unique to RANKL-treated macrophages mimicking osteoclasts. This study suggests a new paradigm in which WNT5A has opposing effects on bone remodeling that are dependent on the cell of origin, an effect that may result from cell type-specific differential posttranslational modifications of WNT5A.


Asunto(s)
Resorción Ósea/metabolismo , Eliminación de Gen , Osteoclastos/metabolismo , Osteogénesis/fisiología , Proteína Wnt-5a/deficiencia , Animales , Resorción Ósea/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Células RAW 264.7 , Proteína Wnt-5a/genética
8.
J Orthop Res ; 38(5): 1007-1015, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31769548

RESUMEN

Conditional deletion of the transcription factor Runt-related transcription factor 1 (Runx1) in myeloid osteoclast precursors promotes osteoclastogenesis and subsequent bone loss. This study posits whether Runx1 regulates clastic cell-mediated bone and cartilage resorption in the fracture callus. We first generated mice, in which Runx1 was conditionally abrogated in osteoclast precursors (LysM-Cre;Runx1F/F ; Runx1 cKO). Runx1 cKO and control mice were then subjected to experimental mid-diaphyseal femoral fractures. Our study found differential resorption of bony and calcified cartilage callus matrix by osteoclasts and chondroclasts within Runx1 cKO calluses, with increased early bony callus resorption and delayed calcified cartilage resorption. There was an increased number of osteoclasts and chondroclasts in the chondro-osseous junction of Runx1 cKO calluses starting at day 11 post-fracture, with minimal woven bone occupying the callus at day 18 post-fracture. LysM-Cre;Runx1F/F mutant mice had increased bone compliance at day 28, but their strength and work to failure were comparable with controls. Taken together, these results indicate that Runx1 is a critical transcription factor in controlling osteoclastogenesis that negatively regulates bone and cartilage resorption in the fracture callus. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:1007-1015, 2020.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/fisiología , Curación de Fractura , Osteoclastos/fisiología , Animales , Callo Óseo/citología , Femenino , Fracturas del Fémur , Masculino , Ratones Transgénicos
9.
J Cell Physiol ; 233(11): 8666-8676, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29781506

RESUMEN

Osteoarthritis (OA) is a degenerative disease and a major cause of chronic disability in aging individuals. Cathepsin K (CatK), encoded by the Ctsk gene, has been implicated in the pathogenesis of pycnodysostosis and osteoporosis. The use of a selective inhibitor of CatK was recently shown to delay OA progression in rabbits. However, the cellular mechanisms underlying these protective effects remain unexplored. We examined articular cartilage maintenance and joint bone remodeling using Ctsk null mice (Ctsk-/- ) which underwent destabilization of the medial meniscus (DMM). We found that Ctsk-/- mice displayed delayed remodeling of subchondral and calcified cartilage by osteoclasts and chodroclasts respectively in DMM-induced osteoarthritis. While WT mice displayed a more severe OA phenotype than Ctsk-/- mice at 16 weeks, higher subchondral bone volume and lower trabecular spacing were also observed in surgically-induced OA joints of Ctsk-/- mice. However, no differences were seen in non-surgical controls. During OA progression, TRAP+ osteoclast numbers were increased in both WT and Ctsk-/- mice. However, Ctsk-/- mice had fewer physis-derived chondroclasts than WT when OA was present. These data suggest that CatK may differentially regulate chondroclastogenesis in the growth plate. Targeted PCR arrays of RNA harvested from laser captured osteoclasts in the subchondral bone and chondroclasts in the growth plate demonstrated differential expression of Atp6v0d2, Tnfrsf11a, Ca2, Calcr, Ccr1, Gpr68, Itgb3, Nfatc1, and Syk genes between WT and Ctsk-/- mice at 8- and 16-weeks post-DMM. Our data provide insight into the cellular mechanisms by which cathepsin K deletion delays OA progression in mice.


Asunto(s)
Cartílago Articular/metabolismo , Catepsina K/genética , Osteoartritis/genética , Osteoporosis/genética , Animales , Desarrollo Óseo/genética , Cartílago/crecimiento & desarrollo , Cartílago/metabolismo , Cartílago Articular/patología , Proliferación Celular/genética , Modelos Animales de Enfermedad , Humanos , Articulación de la Rodilla/metabolismo , Articulación de la Rodilla/patología , Ratones , Osteoartritis/patología , Osteoclastos/metabolismo , Osteoclastos/patología , Osteoporosis/metabolismo , Osteoporosis/patología
10.
Curr Osteoporos Rep ; 16(2): 146-154, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29441447

RESUMEN

PURPOSE OF REVIEW: Growing evidence supports the critical role of transcriptional mechanisms in promoting the spatial and temporal progression of bone healing. In this review, we evaluate and discuss new transcriptional and post-transcriptional regulatory mechanisms of secondary bone repair, along with emerging evidence for epigenetic regulation of fracture healing. RECENT FINDINGS: Using the candidate gene approach has identified new roles for several transcription factors in mediating the reactive, reparative, and remodeling phases of fracture repair. Further characterization of the different epigenetic controls of fracture healing and fracture-driven transcriptome changes between young and aged fracture has identified key biological pathways that may yield therapeutic targets. Furthermore, exogenously delivered microRNA to post-transcriptionally control gene expression is quickly becoming an area with great therapeutic potential. Activation of specific transcriptional networks can promote the proper progression of secondary bone healing. Targeting these key factors using small molecules or through microRNA may yield effective therapies to enhance and possibly accelerate fracture healing.


Asunto(s)
Remodelación Ósea/genética , Curación de Fractura/genética , Regulación de la Expresión Génica , MicroARNs , Osteogénesis/genética , Factores de Transcripción/genética , Factores de Edad , Epigénesis Genética , Expresión Génica , Humanos
11.
Stem Cells Transl Med ; 6(1): 40-50, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28170184

RESUMEN

The success of cell-based therapies to restore joint cartilage requires an optimal source of reparative progenitor cells and tight control of their differentiation into a permanent cartilage phenotype. Bone morphogenetic protein 2 (BMP-2) has been extensively shown to promote mesenchymal cell differentiation into chondrocytes in vitro and in vivo. Conversely, developmental studies have demonstrated decreased chondrocyte maturation by Wingless-Type MMTV Integration Site Family, Member 5A (Wnt5a). Thus, we hypothesized that treatment of human embryonic stem cell (hESC)-derived chondroprogenitors with BMP-2 followed by Wnt5a may control the maturational progression of these cells into a hyaline-like chondrocyte phenotype. We examined the effects of sustained exposure of hESC-derived mesenchymal-like progenitors to recombinant Wnt5a or BMP-2 in vitro. Our data indicate that BMP-2 promoted a strong chondrogenic response leading to terminal maturation, whereas recombinant Wnt5a induced a mild chondrogenic response without promoting hypertrophy. Moreover, Wnt5a suppressed BMP-2-mediated chondrocyte maturation, preventing the formation of fibrocartilaginous tissue in high-density cultures treated sequentially with BMP-2 and Wnt5a. Implantation of scaffoldless pellets of hESC-derived chondroprogenitors pretreated with BMP-2 followed by Wnt5a into rat chondral defects induced an articular-like phenotype in vivo. Together, the data establish a novel role for Wnt5a in controlling the progression from multipotency into an articular-like cartilage phenotype in vitro and in vivo. Stem Cells Translational Medicine 2017;6:40-50.


Asunto(s)
Proteína Morfogenética Ósea 2/farmacología , Cartílago Articular/fisiología , Células Madre Embrionarias Humanas/citología , Células Madre Mesenquimatosas/citología , Regeneración/efectos de los fármacos , Proteína Wnt-5a/farmacología , Animales , Biomarcadores/metabolismo , Cartílago Articular/efectos de los fármacos , Línea Celular , Linaje de la Célula/efectos de los fármacos , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Condrogénesis/efectos de los fármacos , Condrogénesis/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Células Madre Embrionarias Humanas/efectos de los fármacos , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Ratas Desnudas
12.
Endocrinology ; 157(8): 3058-69, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27267711

RESUMEN

Runt-related transcription factor 1 (Runx1), a master regulator of hematopoiesis, is expressed in preosteoclasts. Previously we evaluated the bone phenotype of CD11b-Cre Runx1(fl/fl) mice and demonstrated enhanced osteoclasts and decreased bone mass in males. However, an assessment of the effects of Runx1 deletion in female osteoclast precursors was impossible with this model. Moreover, the role of Runx1 in myeloid cell differentiation into other lineages is unknown. Therefore, we generated LysM-Cre Runx1(fl/fl) mice, which delete Runx1 equally (∼80% deletion) in myeloid precursor cells from both sexes and examined the capacity of these cells to differentiate into osteoclasts and phagocytic and antigen-presenting cells. Both female and male LysM-Cre Runx1(fl/fl) mice had decreased trabecular bone mass (72% decrease in bone volume fraction) and increased osteoclast number (2-3 times) (P < .05) without alteration of osteoblast histomorphometric indices. We also demonstrated that loss of Runx1 in pluripotential myeloid precursors with LysM-Cre did not alter the number of myeloid precursor cells in bone marrow or their ability to differentiate into phagocytizing or antigen-presenting cells. This study demonstrates that abrogation of Runx1 in multipotential myeloid precursor cells significantly and specifically enhanced the ability of receptor activator of nuclear factor-κB ligand to stimulate osteoclast formation and fusion in female and male mice without affecting other myeloid cell fates. In turn, increased osteoclast activity in LysM-Cre Runx1(fl/fl) mice likely contributed to a decrease in bone mass. These dramatic effects were not due to increased osteoclast precursors in the deleted mutants and argue that inhibition of Runx1 in multipotential myeloid precursor cells is important for osteoclast formation and function.


Asunto(s)
Células Presentadoras de Antígenos/fisiología , Diferenciación Celular/genética , Transdiferenciación Celular/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/fisiología , Células Progenitoras Mieloides/fisiología , Osteoclastos/fisiología , Fagocitos/fisiología , Animales , Resorción Ósea/genética , Células Cultivadas , Femenino , Hematopoyesis/genética , Masculino , Ratones , Ratones Transgénicos
13.
Spine (Phila Pa 1976) ; 41(8): E449-58, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27064336

RESUMEN

STUDY DESIGN: Preclinical animal study. OBJECTIVE: Determine the in vivo effects of platelet-derived growth factor BB (PDGF-BB) delivered in a thiol-modified hyaluronic acid (TMHA) hydrogel on intervertebral disk (IVD) degeneration. SUMMARY OF BACKGROUND DATA: IVD degeneration is a worldwide health concern and remains without an effective treatment. Several in vitro studies have demonstrated the potential of PDGF-BB, a primary component of platelet-rich plasma, as a therapy for IVD degeneration. Our hypotheses were that treatment of injured IVDs with PDGF would inhibit degeneration and that administration of PDGF in a TMHA hydrogel would improve its efficacy. METHODS: IVD degeneration was induced using the rabbit annular puncture model. Four weeks after injury, IVDs were treated with either PDGF-BB or PDGF-BB delivered within a TMHA hydrogel. The efficacy of treatment was determined using x-ray, MRI, histology, and biomechanical testing. RESULTS: At 4 weeks after treatment, cell apoptosis and deposition of matrix containing type III collagen a1 (Col3a1) was demonstrated in both the nucleus pulposus and annulus fibrosus, while this was inhibited by PDGF. At 8 weeks after treatment, disc area and MRI indices of injured IVDs treated with PDGF were significantly higher (P < 0.05) than those treated with the TMHA alone. Similarly, degenerative scores for saline- and TMHA-treated IVDs demonstrated significantly more degeneration (P < 0.05) than PDGF-treated IVDs at 8 weeks. Biomechanical assessments found fewer indicators of degeneration in PDGF-TMHA-treated IVDs at both 4 and 8 weeks post-treatment, compared to saline-, TMHA-, and PDGF-only-treated IVDs. Both PDGF- and PDGF-TMHA-treated IVDs also demonstrated a significant increase (P < 0.05) in compressive strength to failure, compared with controls at 8 weeks post-treatment. CONCLUSION: The results of this study suggest that PDGF-BB significantly decreases disc degeneration and when delivered in a TMHA gel scaffold, helps prevent both apoptosis and Col3 matrix production, while maintaining disc structure and biomechanical function. LEVEL OF EVIDENCE: NA.


Asunto(s)
Degeneración del Disco Intervertebral/tratamiento farmacológico , Disco Intervertebral/efectos de los fármacos , Proteínas Proto-Oncogénicas c-sis/farmacología , Proteínas Proto-Oncogénicas c-sis/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Becaplermina , Modelos Animales de Enfermedad , Inmunohistoquímica , Disco Intervertebral/patología , Degeneración del Disco Intervertebral/patología , Degeneración del Disco Intervertebral/fisiopatología , Masculino , Conejos
14.
J Orthop Res ; 33(1): 122-30, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25231276

RESUMEN

This study investigated the effects of local delivery of manganese chloride (MnCl2), an insulin-mimetic compound, upon fracture healing using a rat femoral fracture model. Mechanical testing, histomorphometry, and immunohistochemistry were performed to assess early and late parameters of fracture healing. At 4 weeks post-fracture, maximum torque to failure was 70% higher (P<0.05) and maximum torsional rigidity increased 133% (P<0.05) in animals treated with 0.125 mg/kg MnCl2 compared to saline controls. Histological analysis of the fracture callus revealed percent new mineralized tissue was 17% higher (P<0.05) at day 10. Immunohistochemical analysis of the 0.125 mg/kg MnCl2 treated group, compared to saline controls, showed a 379% increase in the density of VEGF-C+ cells. In addition, compared to saline controls, the 0.125 mg/kg MnCl2 treated group showed a 233% and 150% increase in blood vessel density in the subperiosteal region at day 10 post-fracture as assessed by detection of PECAM and smooth muscle α actin, respectively. The results suggest that local MnCl2 treatment accelerates fracture healing by increasing mechanical parameters via a potential mechanism of amplified early angiogenesis leading to increased osteogenesis. Therefore, local administration of MnCl2 is a potential therapeutic adjunct for fracture healing.


Asunto(s)
Cloruros/farmacología , Cloruros/uso terapéutico , Fracturas del Fémur/tratamiento farmacológico , Curación de Fractura/efectos de los fármacos , Compuestos de Manganeso/farmacología , Compuestos de Manganeso/uso terapéutico , Actinas/metabolismo , Animales , Fenómenos Biomecánicos , Femenino , Fracturas del Fémur/metabolismo , Masculino , Modelos Animales , Neovascularización Fisiológica/efectos de los fármacos , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Ratas , Ratas Endogámicas BB , Ratas Wistar , Resultado del Tratamiento , Factor A de Crecimiento Endotelial Vascular/metabolismo
15.
J Orthop Traumatol ; 16(2): 151-9, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25421865

RESUMEN

BACKGROUND: Recombinant human bone morphogenetic protein-2 (rhBMP-2) is particularly effective in improving osteogenesis in patients with diminished bone healing capabilities, such as individuals with type 1 diabetes mellitus (T1DM) who have impaired bone healing capabilities and increased risk of developing osteoporosis. This study measured the effects of rhBMP-2 treatment on osteogenesis by observing the dose-dependent effect of localized delivery of rhBMP-2 on biomechanical parameters of bone using a hydroxyapatite/tri-calcium phosphate (HA/TCP) carrier in a T1DM-related osteoporosis animal model. MATERIALS AND METHODS: Two different doses of rhBMP-2 (LD low dose, HD high dose) with a HA/TCP carrier were injected into the femoral intramedullary canal of rats with T1DM-related osteoporosis. Two more diabetic rat groups were injected with saline alone and with HA/TCP carrier alone. Radiographs and micro-computed tomography were utilized for qualitative assessment of bone mineral density (BMD). Biomechanical testing occurred at 4- and 8-week time points; parameters tested included torque to failure, torsional rigidity, shear stress, and shear modulus. RESULTS: At the 4-week time point, the LD and HD groups both exhibited significantly higher BMD than controls; at the 8-week time point, the HD group exhibited significantly higher BMD than controls. Biomechanical testing revealed dose-dependent, higher trends in all parameters tested at the 4- and 8-week time points, with minimal significant differences. CONCLUSIONS: Groups treated with rhBMP-2 demonstrated improved bone mineral density at both 4 and 8 weeks compared to control saline groups, in addition to strong trends towards improvement of intrinsic and extrinsic biomechanical properties when compared to control groups. Data revealed trends toward dose-dependent increases in peak torque, torsional rigidity, shear stress, and shear modulus 4 weeks after rhBMP-2 treatment. LEVEL OF EVIDENCE: Not applicable.


Asunto(s)
Proteína Morfogenética Ósea 2/farmacología , Fosfatos de Calcio/farmacología , Diabetes Mellitus Tipo 1/complicaciones , Durapatita/farmacología , Fémur/patología , Osteoporosis/tratamiento farmacológico , Osteoporosis/etiología , Factor de Crecimiento Transformador beta/farmacología , Animales , Fenómenos Biomecánicos , Densidad Ósea/efectos de los fármacos , Modelos Animales de Enfermedad , Masculino , Osteogénesis/efectos de los fármacos , Ratas Wistar , Proteínas Recombinantes/farmacología , Microtomografía por Rayos X
16.
Methods Mol Biol ; 1226: 193-211, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25331052

RESUMEN

The closed fracture rat model, first described by Bonnarens and Einhorn, has been widely implemented in recent years to characterize various fracture phenotypes and evaluate treatment modalities. Slight modifications in the fixation depth, to reduce surgical error associated with movement/dislocation of the k-wire fixation, were previously described. Here, we describe this method which involves the creation of a medial parapatellar incision, dislocation of the patella, boring an 18 gauge hole through the center of the femur, delivery of an adjunct (if applicable), fixation of the k-wire in the greater trochanter of the femur, suturing of muscle and skin, and finally creation of the mid-diaphyseal fracture with a three-point bending fracture device. Many laboratories routinely perform surgical procedures in which a closed fracture is induced using rat or mouse models. The benefits of such surgical models range from general orthopaedic trauma applications to the assessment of the healing process in genetically modified animals. Other important applications include the assessment of the safety and efficacy of various treatment modalities as well as the characterization of bone repair in metabolic bone diseases or skeletal dysplasia.


Asunto(s)
Modelos Animales de Enfermedad , Fracturas del Fémur , Traumatismos de la Rodilla , Rótula , Animales , Fracturas del Fémur/metabolismo , Fracturas del Fémur/patología , Fracturas del Fémur/fisiopatología , Traumatismos de la Rodilla/metabolismo , Traumatismos de la Rodilla/patología , Traumatismos de la Rodilla/fisiopatología , Ratones , Rótula/metabolismo , Rótula/fisiopatología , Ratas
17.
J Orthop Res ; 32(9): 1181-8, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24841673

RESUMEN

Degeneration of the intervertebral disc (IVD) results in deterioration of the spinal motion segment and can lead to debilitating back pain. Given the established mitotic and anti-apoptotic effects of recombinant human platelet-derived growth factor-BB (rhPDGF-BB) in a variety of cell types we postulated that rhPDGF-BB might delay disc cell degeneration through inhibition of apoptosis. To address this hypothesis, we treated human IVD cells isolated from five independent patients with rhPDGF-BB in monolayer and 3D pellet cultures. The anti-apoptotic potential, cell proliferative capacity, morphology/pellet differentiation, and gene expression of PDGF-treated IVD cells were evaluated via flow cytometry/immunohistochemistry, MTT assays, histology, and quantitative RT-PCR, respectively. We found that rhPDGF-BB treatment significantly inhibited cell apoptosis, increased cell proliferation and matrix production, and maintained mRNA expression of critical extracellular matrix genes. This study suggests two possible mechanisms for the anti-degenerative effects of rhPDGF-BB on human IVD cells. First, PDGF treatment strongly inhibited IVD cell apoptosis in 3D cultures. Second, rhPDGF-BB acts as an anabolic agent, promoting maintenance of IVD cell phenotype in 3D culture, based on the molecular and protein expression analysis. We speculate that rhPDGF-BB may be used as a biologic treatment to target early degenerative IVD disease in the future.


Asunto(s)
Apoptosis/efectos de los fármacos , Degeneración del Disco Intervertebral/patología , Disco Intervertebral/efectos de los fármacos , Disco Intervertebral/patología , Proteínas Proto-Oncogénicas c-sis/farmacología , Adulto , Anexina A5/metabolismo , Becaplermina , Caspasa 3/metabolismo , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Técnicas In Vitro , Disco Intervertebral/metabolismo , Persona de Mediana Edad , Proteínas Recombinantes/farmacología
18.
J Orthop Res ; 32(6): 834-41, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24574139

RESUMEN

This study evaluated the effect of local zinc chloride (ZnCl2 ), an insulin mimetic agent, upon the early and late parameters of fracture healing in rats using a standard femur fracture model. Mechanical testing, radiographic scoring, histomorphometry, qualitative histological scoring, PCNA immunohistochemistry, and local growth factor analysis were performed. Fractures treated with local ZnCl2 possessed significantly increased mechanical properties compared to controls at 4 weeks post fracture. The radiographic scoring analysis showed increased cortical bridging at 4 weeks in the 1.0 (p=0.0015) and 3.0 (p<0.0001) mg/kg ZnCl2 treated groups. Histomorphometry of the fracture callus at day 7 showed 177% increase (p=0.036) in percent cartilage and 133% increase (p=0.002) in percent mineralized tissue with local ZnCl2 treatment compared to controls. Qualitative histological scoring showed a 2.1× higher value at day 7 in the ZnCl2 treated group compared to control (p = 0.004). Cell proliferation and growth factors, VEGF and IGF-I, within fracture calluses treated with local ZnCl2 were increased at day 7. The results suggest local administration of ZnCl2 increases cell proliferation, causing increased growth factor production which yields improved chondrogenesis and endochondral ossification. Ultimately, these events lead to accelerated fracture healing as early as 4 weeks post fracture.


Asunto(s)
Callo Óseo/efectos de los fármacos , Cloruros/uso terapéutico , Fracturas del Fémur/tratamiento farmacológico , Curación de Fractura/efectos de los fármacos , Compuestos de Zinc/uso terapéutico , Animales , Proliferación Celular , Condrogénesis , Fracturas del Fémur/patología , Fémur/efectos de los fármacos , Factor I del Crecimiento Similar a la Insulina/biosíntesis , Masculino , Antígeno Nuclear de Célula en Proliferación/biosíntesis , Ratas , Ratas Endogámicas BB , Factor A de Crecimiento Endotelial Vascular/biosíntesis
19.
J Orthop Res ; 32(5): 727-34, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24375684

RESUMEN

This study evaluated the efficacy of using calcium sulfate (CaSO4 ) as a carrier for intramedullary delivery of an organic vanadium salt, vanadyl acetylacetonate (VAC) after femoral fracture. VAC can act as an insulin-mimetic and can be used to accelerate fracture healing in rats. A heterogenous mixture of VAC and CaSO4 was delivered to the fracture site of BB Wistar rats, and mechanical testing, histomorphometry, micro-computed tomography (micro-CT) were performed to measure healing. At 4 weeks after fracture, maximum torque to failure, effective shear modulus, and effective shear stress were all significantly higher (p < 0.05) in rats treated with 0.25 mg/kg VAC-CaSO4 as compared to carrier control rats. Histomorphometry found a 71% increase in percent cartilage matrix (p < 0.05) and a 64% decrease in percent mineralized tissue (p < 0.05) at 2 weeks after fracture in rats treated with 0.25 mg/kg of VAC-CaSO4 . Micro-CT analyses at 4 weeks found a more organized callus structure and higher trending maximum connected z-ray. fraction for VAC-CaSO4 groups. Evaluation of radiographs and serial histological sections at 12 weeks did not show any evidence of ectopic bone formation. As compared to previous studies, CaSO4 was an effective carrier for reducing the dose of VAC required to accelerate femoral fracture healing in rats.


Asunto(s)
Sulfato de Calcio/administración & dosificación , Fracturas del Fémur/terapia , Curación de Fractura/efectos de los fármacos , Hidroxibutiratos/administración & dosificación , Pentanonas/administración & dosificación , Vanadio/administración & dosificación , Animales , Fenómenos Biomecánicos , Callo Óseo/efectos de los fármacos , Portadores de Fármacos/administración & dosificación , Femenino , Masculino , Ratas , Ratas Endogámicas BB , Microtomografía por Rayos X
20.
J Orthop Trauma ; 28(8): e191-7, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24343257

RESUMEN

OBJECTIVES: Wnt5a expression is upregulated during fracture repair and has previously been implicated as a potential regulator of skeletal development and bone mass accrual and maintenance. Our objective was to evaluate the function of Wnt5a in fracture healing. METHODS: Femoral fracture experiments on Wnt5a and Wnt5a mice were carried out. To better understand the effect of the Wnt5a on bone repair, we evaluated radiographs using a previously validated qualitative scoring system and performed microcomputed tomography analyses. Histomorphometric analyses determined the temporal distribution of stroma, cartilage matrix, and woven bone in the fracture callus. Finally, we performed tartrate-resistant acid phosphatase (TRAP) immunohistochemical staining to visualize and quantify bone resorbing cells. RESULTS: Radiographic evaluations at day 21 demonstrated significantly higher cortical remodeling and bridging parameters for the Wnt5a group compared with the Wnt5a group. The bone volume fraction by microcomputed tomography was also significantly increased in Wnt5a mice. Histological and histomorphometric analyses showed that although Wnt5a mice exhibit decreased cartilage matrix production at day 7 postfracture, they displayed increased residual cartilaginous callus at days 14 and 21 compared with the Wnt5a group. In addition, the total number of multinucleated tartrate-resistant acid phosphatase-positive cells was significantly lower in the Wnt5a group than in the Wnt5a group. CONCLUSIONS: The data indicate that decreased Wnt5a signaling impaired proper fracture healing, possibly through decreased cartilaginous callus formation, and delayed cartilage matrix and mineralized tissue remodeling within the fracture callus.


Asunto(s)
Fracturas del Fémur/genética , Fracturas del Fémur/patología , Curación de Fractura/genética , Proteínas Wnt/genética , Animales , Remodelación Ósea/genética , Remodelación Ósea/fisiología , Callo Óseo/metabolismo , Callo Óseo/fisiopatología , Cartílago/fisiopatología , Modelos Animales de Enfermedad , Fracturas del Fémur/diagnóstico por imagen , Fracturas del Fémur/fisiopatología , Curación de Fractura/fisiología , Expresión Génica , Haploinsuficiencia , Masculino , Ratones , Ratones Transgénicos , Radiografía , Proteína Wnt-5a
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...